Tan, Sin and Cos Ratios

Find Tan A, Cos A and Sin A of the following triangle

TanA $=\frac{\text { Opposite }}{\text { Adjacent }} \quad$ Toms $=\frac{\text { Old }}{\text { Aunt }}$
$\operatorname{Sin} A=\frac{\text { Opposite }}{\text { Hypotenuse }}$
$\operatorname{Cos} A=\frac{\text { Adjacent }}{\text { Hypotenuse }}$

$$
S a t=\frac{O n}{H e r}
$$

$$
\operatorname{Cos} A=\frac{\text { Adjacent }}{\text { Hypotenuse }} \quad \text { Coat }=\frac{\text { And }}{\text { Hat }}
$$

Unit Circle

Find the two values of A, given that $\operatorname{Cos} A=-0.8660$ and $0^{\circ} \leq A \leq 360^{\circ}$ Ignore the sign and use your calculator to find the reference angle.

$$
\begin{array}{c|c|}
\hline \mathbf{S} & \mathbf{A} \\
\hline \mathbf{T} & \mathbf{C} \\
\hline
\end{array}
$$

Look at the sign and use
to see what quadrants your two angles lie in. Draw the two angles - they will be the reference angle distance from the x axis.

Area of a Sector/ Length of an Arc

Find the area of the sector aob and the length of the arc $a b$ where o is the centre of a circle with radius 7 . Use $\pi=3.14$

To find the area of sector or length of arc (which is only a fraction of the circle) we multiply πr^{2} or $2 \pi r$ by the fraction.
Area of a Sector $=\frac{\phi}{360} \times \pi r^{2}$
Length of an Arc $=\frac{\phi}{360} \times 2 \pi r$
where ϕ is the angle of the sector

Pythagoras

Hypotenuse $^{2}=$ Opposite $^{2}+$ Adjacent 2
$\operatorname{Cos} A=\frac{5}{13}$

Find TanA and $\operatorname{Sin} A$

Draw a rough sketch and fill in the known sides. Use Pythagoras to find out the other side? Use the above ratios

Sine Rule
In the triangle pqr, $|p q|=12 \mathrm{~cm}, \angle p q r=60^{\circ}$ and $\angle q r p=35^{\circ}$. Find $|p r|$.

We use the Sine formula to find a missing side or angle when we have been given 2 sides and one of the opposite angles OR two angles and one of the opposite sides of a triangle. It basically says that any side over the sine of its opposite angle is equal to any other side over its opposite angle

Calculator Work
 Find Sin $33^{\circ} 16^{\prime}$

Press Sin then type 33 then the DMS
button then 16 then ' $=$ '
$=\mathbf{0 . 5 4 8 6} \quad$ (round off to 4 decimals)

Calculator Work
 $\operatorname{Cos} A=0.7071$ Find A
 Press $2^{\text {nd }}$ Function Press Cos then type 0.7071 then ' $=$ '
 $\mathrm{A}=45^{\circ}$

Right Angled Triangles

abc is a right-angled triangle with $|a c|=$ $6 c m$ and $\angle a b c=60^{\circ}$. Find $|a b|$.
To do this we first draw a rough sketch of the triangle filing in any information we know. We put an X next to the angle or side we are looking for. We decide what ratio Tan, Sin or Cos is relevant. We solve for x .

Area of a Triangle

Use the formula $\frac{1}{2} a b \operatorname{Sin} C$ where a and b are the two sides of a triangle and C is the angle between them.

Can I find a missing side or angle given the area of a triangle?

The Area of triangle pqr is $24 \mathrm{~cm}^{2}$. Find the length of the side $|p q|$

Write down the formula, fill in any known values and let it equal the area. Solve for the missing value.

