Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2} y_{2}\right)$
Distance $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Midpoint $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Slope $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
If we have a line $a x+b y+c=0$ then
$m=\frac{-a}{b}$

Equation of a line (or tangent) with a slope
\mathbf{m} and point $\left(x_{1,} y_{1}\right)$
$y-y_{1}=m\left(x-x_{1}\right)$

The area of a triangle with vertices $(0,0)$
$\left(x_{1,} y_{1}\right)$ and $\left(x_{2} y_{2}\right)$
$\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$

Intersection of Lines

Identify the point of intersection of the lines $5 x+2 y=7$ and $2 x-y=10$
To find the point of intersection of two lines do a simultaneous equation. This gives you an x and y value which make the point.

Show A Point is on a Line

Investigate if the point $(3,4)$ is on the line
$3 x+y-13=0$
Put the point into the equation for x and y . If the equation works out the point is on the line.

Cutting x and y axis

Find the points where the line
$3 x-4 y=12$ cuts the x and y axis
A line cuts the y axis at $\mathrm{x}=0$
A line cuts the x axis at $\mathrm{y}=0$

Midpoint

$\overline{a(3,4)}$ and $b(6,-1)$ are two points, find the midpoint of $a b$
Label the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and fill them into the midpoint formula -
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Slope Given Points

$a(3,4)$ and $b(6,-1)$ are two points, find the slope of $a b$
Label the points $\left(x_{1}, y_{1}\right)$ and
$\left(x_{2}, y_{2}\right)$ and fill them into the slope
formula $-\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Perpendicular Slope

Find the slope of the line perpendicular to $3 x$ $+5 y+7=0$
Turn the slope upside down and change the sign?
Slope is $m=-\frac{3}{5}$ so the perpendicular slope
is $m=+\frac{5}{3}$

Slope Given Line

Find the slope of $3 x+5 y+7=0$
If we have a line $a x+b y+c=0$ then

$$
m=-\frac{a}{b} \quad m=-\frac{3}{5}
$$

Equation of a Line

Find the equation of a line passing through the point $(3,4)$ with a slope -3
Use the formula $y-y_{1}=m\left(x-x_{1}\right)$ where you are given the slope m and you know one of the points $\left(x_{1}, y_{1}\right)$.
If you are given two of the points but NOT the slope use the slope formula to get the slope and then EITHER point.

Symmetry

Find the image of (2,-3) under (i) $S_{x}(i i) S_{y}$ and (iii) S_{o}
To move through the x axis change the sign of the y value. To move through the y axis change the sign of the x value. To move through the origin change the signs of the x and y part.

Translations

Find the image of $(3,1)$ through the point $(1,2)$ This means moving a point through a point and out the same distance and direction the other side.

