Substitution

Find the value of $x^{2}-5 x y$ when x $=3$ and $y=-2$
Replace your x and y values with the numbers given and solve

Simplify Algebraic Fractions

Simplify $\frac{1}{x+1}+\frac{2}{x-3}$
Find a common denominator. In this case $(\mathrm{x}+1)(\mathrm{x}-3)$ and simplify it down. Only if there is an equals on top you can get rid of the bottom.

Formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Solve the equation
$-3 x^{2}-5 x+8=0$
Let $\mathrm{a}=-3, \mathrm{~b}=-5$ and $\mathrm{c}=8$ and sub them into the formula to get two values for x .

Simple Equations

$3(2 x-1)=4 x$
Get rid of brackets, x 's to one side, no's to the other.

Rearranging

Express b in terms of a and c
$\frac{8 a-5 b}{b}=c$
This means get b by itself. Remove the fractions and bring all the b 's to one side. Factorise if needed.

Factorising

Factorise

Put in brackets according to type: Common Factor -
$6 x^{2}-18 x=6 x(x-3)$
Grouping -
$x^{2}-a b-b x+a x=(x-b)(x+a)$

Quadratics

$2 x^{2}-5 x-12=(2 x+3)(x-4)$
Difference of Two Squares
$x^{2}-25=(x+5)(x-5)$

More Complex Functions

$f(x)=a x^{2}+b x-8$
$f(1)=-9$ and $f(-1)=3$ find the value of a and b
First sub in 1 for x and let it equal 9. Then sub in -1 for x and let it equal 3. You will be left with two equations with which you can do a simultaneous equation to find a and b.

Indices

Solve for $x\left(8^{\frac{1}{3}}\right)\left(4^{\frac{1}{4}}\right)=2^{5-x}$
Break down the equation so that each term has the same base number, in this case 2. Then let the powers on each side above the 2 equal each other.

Long Division

Divide $x^{3}+3 x^{2}-4 x-12$ by $x-2$
Divide the first number in $x-2$ into the first number in $x^{3}+3 x^{2}-4 x-12$ and put the answer on top, x^{2}. Multiply this by $\mathrm{x}-2$ and put underneath. Change signs, cancel and tidy down. We repeat this same step up to 3 times. You will know that your answer is correct if when you subtract the last set of terms your answer is 0

Inequalities/ Numberlines

Show the solution set of

$5 x+1 \geq 4 x+3$ on a numberline
Treat this like an equation with x's to one side and numbers to the other. $x \in N, x \in Z$ means dots. $x \in R$ means shading.

Drawing Graphs

Draw the graph of the function
$f(x)=2 x^{3}-5 x^{2}-4 x+3$ in
the domain $-1 \leq x \leq 3$
Put all the numbers in the domain from -1 to 3 into the equation. The numbers you put in are the x values of each point. The numbers you get out are the y values of each point. Make your graph as wide as possible.

Functions

$f(x)=4 x+3$, find $f(2)$
Simply sub in 2 for x and solve

Graphs and Functions

The curve $f: x \rightarrow 2 x^{2}+a x+b$
crosses the x axis at $(-2,0)$ and $(3,0)$ find \boldsymbol{a} and \boldsymbol{b}
Here we make two separate equations. In the first we use $(-2,0)$ and put in -2 for x and let it all equal to the y value, 0 .
We repeat this for the point $(3,0)$, putting in 3 for x and let it equal to y value, 0 .
We are left with a simultaneous equation in a and b. Solve.

Reading Graphs

Use your graph to find max, min, points of intersection, $f(x)=4, f(3)$
Max - Highest point of curve
Min - Lowest point on curve
Intersection - where lines meet $f(x)=4-$ go to where $y=4$ across to meet curve and down to read x value $f(3)-g o$ to where $x=3$ up to curve and across to read y value.

